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Abstract
The miscibility gap and high critical temperature in Au–Ni together with
coherency strain effects in decomposition arise primarily due to the Pauli
principle, whereby the fcc lattice parameter of Au is 1.15 times that of Ni, thus
acting maximally according to Hume-Rothery against extensive solid solution
formation. Since the critical point is only about 100 ◦C below the solidus,
this simplifies the theoretical evaluation of the solubility limitation. It also
offers a bridge to spinodal kinetics encompassing a dominant solution effect
of local Vegard’s law strain, which acts repulsively in bulk clustering and
attractively in gradient energy relaxation. Low and high temperature TEM
hot stage observations of continuous modulated decomposition spanning the
miscibility gap of Au–Ni (Tc � 1080 K) can be interpreted according to the
time-dependent Ginzburg–Landau (TDGL) reaction–diffusion theory modified
to include solute conservation and a diffusion-relaxable effect of strain while
maintaining full low amplitude coherency. Modulated decomposition structures
of order 3 nm, proven through lattice imaging to be spinodal in character by
Sinclair et al, have often been reported near the so-called upper limit, coherent
critical temperature (∼420 K), where the wavelength is supposed to be infinite,
while we report here well advanced 10 nm modulations at 350 ◦C above this. As
a crystallographic template, the fine three-dimensional interleaved dendrite-like
tweed pattern first decoheres, then locally transforms at 773 K into ∼100 nm
lamellar spacing intragranular nodules. These coarsened bulk products are
modulation-templated, faceted, near-spherical structures, first observed by
Underwood between 673 and 973 K and by Cahn at 993 K in 1954, and prove to
be consistent with steady state lamellar solutions of the TDGL equation. This
three-stage decomposition mode in ∼100 nm thick films competes with the
well known grain-boundary-nucleated short-circuited lamellar product, which
was originally deemed to be unique in bulk samples at higher temperatures.
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Figure 1. The Au–Ni phase diagram exhibiting the miscibility gap [3].

1. Introduction

Pearson [1] summarizes the empirical size rule of Hume-Rothery with the statement that ‘unless
the solute and solvent radii fall within about 15% of each other extensive solid solutions cannot
be formed even though all other factors are favourable. As this rule holds generally it can be
predicted with some certainty that extensive solid solutions will not form in any system where
the radii differ by more than 15%’. The existence of such a well established empirical rule is
proof that the relative size effect is a unique contribution to solution thermodynamics in the
usual sense of excess unlike atomic repulsion or attraction. This exists in a stochastic vacancy-
moderated self-diffusing milieu with barrier-mounting chemical free energies of kT /2 per
atom per degree of freedom, which approaches the pairing energy density [2]. This phase
diagram limitation, which anticipates a clustering transformation, can be derived in solid state
alloy solution theory via the establishment of a transitive relation (�) between the strain energy
density and the approximate total pair energy density 2nvkTc. With the fcc lattice parameter
ratio of Au/Ni of 1.15 it is evident that the rule is exhibited at the equality margin of this
criterion where, since Tc approaches the solidus temperature (compare the phase diagram of
figure 1 [3]), the strain energy density represents close to the total pair energy density. Pearson
[1] and Friedel [4] have accordingly emphasized that in general the size effect, reflecting the
Pauli principle, is primary in the determination of the solution chemistry and therefore the
detail of the miscibility gap. They note that valency differences and polarization effects also
play a part, recognizing that these further electronic effects are not strictly independent.

The present article is concerned with the empirical and theoretical consequences in kinetics
of this important contribution of Hume-Rothery, and will have much to do with understanding
the sequence of modulated 773 K TEM hot stage patterns of figures 2–4. The viewing of such
developing patterns in situ establishes from the start that we are dealing with an isothermal,
strictly autonomous system, which is to say that the boundary conditions are irrelevant [5]. The
heterogeneity of the pattern demands a variational approach to the theory and establishes the
time-dependent Ginzburg–Landau (TDGL) reaction–diffusion equation [5–7] with a solute-
conserving Lagrange multiplier as appropriate since fluctuations are the natural, quench-
induced initial condition. This equation uniquely generates the Helmholz free energy as a
Lyapunov functional without reference to boundary conditions [5].
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Figure 2. Spinodal modulations in Au–50 at.% Ni. 30 minutes at 773 K on the TEM hot stage.

Figure 3. Spinodal modulations in Au–50 at.% Ni. 45 minutes at 773 K. Note threading
dislocations, and Moiré patterns, which designate the beginning of decoherency.
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Figure 4. Spinodal modulations in Au–50 at.% Ni. 60 minutes at 773 K. A more advanced stage
of decoherency.

Figure 5. Lattice spacing and percentage vacant lattice sites of the Au–Ni solid solution as a
function of composition [1].

The foregoing Au–Ni results are consistent with the near-linearity of the lattice parameter
in figure 5 [1], which approaches Vegard’s law and can be extended to address the kinetics.
We argue from the aforementioned direct relationship due to Friedel [4] that the strain energy
density is a repulsive electronic pairing effect [8, 9] so must combine as a responsively attractive
downhill diffusion effect with valency and/or polarization contributions to the effective pair
energy density as they appear within the gradient energy coefficient. This coupling is presumed
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to occur without causing loss of coherence. This is in contrast with the more elaborate Cahn–
Hilliard diffusion theory [10], which disallows both a naturally fluctuating initial condition and
diffusion relaxation of strain energy. It is likely that both viewpoints represent polar extremes
of a more general theory yet to be worked out, a matter which we will address at the end.

The slight lattice parameter curvature in figure 5 [1] can reasonably be attributed to the
known augmentation of the nickel valency (2 or 3) relative to that of Au (1 or 2). Such
an eventuality is undoubtedly at the root of the much-augmented vacancy densities recorded
in figure 5. Because its sign represents lattice expansion, decomposition of an alloy means
creation of free volume, which can abet decoherency at sufficient amplitudes. This sign is the
opposite of that implied by the Cahn–Hilliard coherency effect, which by ignoring fluctuations
and invoking strain energy relaxation, collapses the alloyed lattice into an ostensibly more
stable configuration at the higher temperatures.

In a related empirical investigation of L12 ordering of the form Ni3X Pearson [11] has
concluded that this phase formation is denied by the Hume-Rothery size effect if rX > 1.12rNi

thus excluding its equilibrium appearance in Au–Ni alloys. Notwithstanding, L12 satellites
in TEM observations on transforming Au–Ni alloys between 25 and 75% at 773 K have been
observed (figure 6). We shall argue in a separate contribution that this is a purely dynamical
consequence of the accompanying modulation formations.

Figure 6. Continuation of the series 2–4 to 90 minutes. Appearance of Ni3Au superlattice satellites.

Figure 7 exhibits the miscibility gap of Au–Ni as proposed by Abadias et al [12]. This
superimposes the currently predicted effect of coherency plane strain on the critical point and
spinodal line according to the long range strain-dependent fourth order diffusion theory [10].
These authors have identified in the figure a compendium of recorded modulation observations
such as in figure 3 by their composition and quench temperature and these exhibit wavelengths
of 1 to 5 nm, the range presumably reflecting composition and different thermal paths taken
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Figure 7. Phase diagrams of the Au–Ni system: chemical miscibility gap (bold line), chemical
spinodal (dashed line) calculated from Cook and Hilliard’s method and calculated coherent spinodal
(solid curve). Some experimental values (◦) and (�) are also reported.

to reach the decomposition isotherm. Since in Cahn–Hilliard theory the coherent critical
temperature Tcc defines an infinite cut-off wavelength we have taken these short wavelength
observations as notice of a potential discrepancy, discounting the proposition that TEM thin
film surfaces offer a three-dimensional relaxant of coherency strain which consistently reduces
the observable wavelength via distorted strain contrast to near atomic dimensions. We further
note the research of Sinclair et al [13] on the lattice imaging of bulk decomposition in Au–Ni
at 423 K, which clearly identifies 3 nm strain modulations in subsequently thinned specimens
of expected Vegard’s law misfit magnitude.

Early investigations on bulk polycrystalline alloys, primarily involving light microscopy
and x-ray lattice parameter measurements [14–16], focused upon the higher temperatures
(>600 K), where a grain boundary nucleated lamellar reaction product seemed to dominate,
and this has been commonly identified with the terminal solution process of discontinuous
precipitation [17]. This reaction involves one product phase with its composition stepped
discontinuously from the mother phase and proceeding via frontal boundary short circuit
diffusion. However, Au–Ni differs from the norm for that process in the observation that the
two lamellar reaction products closely approach the equilibrium concentrations without a non-
equilibrium step [14, 16], being as normally implied by the phase diagram. More significant is
Underwood’s observation of frequent intracrystalline near-spherical faceted lamellar nodules
[15], which we have confirmed (figure 8). The cube faceting and near spherical reaction fronts
suggest that there must have been a nucleate coarsening step which is crystallographically
defined. This turned out to be the spinodal cube–cube modulations themselves, which undergo
a complex coarsening reaction while maintaining a near single crystal disposition. The lamellar
reaction as a steady state single crystal process in Au–Ni had been predicted by one of us on
the grounds that the TDGL equation possesses an appropriate two-dimensional solution for
steady state lamellar spinodal decomposition [18, 19]. Current observations, summarized
in the following section, provide firm microscopic evidence that the increased scale of the
tertiary lamellar coarsened reaction is crystallographically templated by the fine continuous
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Figure 8. Cross-sections of dendritic lamellar nodules in Au–38 at.% Ni at 673 K exhibiting
faceting in cube directions. Note the faceting of the three largest nodules in comparison with
the deduced nucleation events (figure 10), implying common templating lattice modulations
undergoing coarsening. The largest nodule is 10 µm in diameter.

Figure 9. Representative lamellar front in Au–38% Ni at 673 K. The electron diffraction inset
establishes the cube–cube relationship between lamellar product phases. Note the frontal misfit
dislocations. Spacing approximately 0.1 µm.

modulations in two or three dimensions. Since the coarsening process is deeply intragranular,
the precursor high strain energy density upon decohering and conversion must contribute to the
rich source of dislocations which ultimately makes up the highly conducting lamellar phase
boundary (figure 9).

In the later theoretical sections we will undertake the explanation of the following
observations within the scope of the second order TDGL reaction–diffusion equation in
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which the locally strain-induced repulsive clustering term subsumes a vacancy-moderated,
fluctuation-initiated homogeneous reaction subject to the opposing Le Chatelier response and
contribution upon loss of coherency to a gradient energy driven reversion process. This
approach will be contrasted with the conventional fourth order theory in various versions,
which, relying upon quasi-static arguments, generates a number of paradoxes.

2. TEM hot stage experiments at 773 K

In planning the present key experiments the sometimes artifact-prone character of previous
TEM observations was examined. Some of these earlier experiments were repeated over a
range of temperatures and compositions (cf figure 8) and these as well as figure 9 verified
a universal cube–cube relation between the two coarse lamellar product phases despite their
necessary lack of a unique habit plane in the often dendrite-like, near-spherical colonies.
Notwithstanding this lack of perfect organization, the nodules exhibited frontal facets which
point towards a mother–product orientation relation and therefore a near single crystal reaction,
evidently inherited from the initiating three-dimensional modulations. Ultimately a range of
alloys at 773 K were chosen together with TEM in situ hot stage observations in the 100 nm
thick portion of thin films as to be the most likely to offer transparent bulk behaviour and
theoretical significance. Such a film thickness avoids the very thin edge artifacts including
copious unwanted dislocation generation, minimizes surface relaxation effects relative to the
total strain energy in 10 or 15 nm modulations, offers sufficient strain contrast for observing
modulations and misfit dislocations and limits the probability of early interference in the film
by rich grain boundary originated lamellar products normally in profusion in the bulk. Four
compositions were examined on the TEM hot stage: 25, 38, 50 and 75 at.% Ni for periods
from 10 to 90 min.

As well as composition modulations, superlattice satellites of Ni3Au were detected in all
cases (figure 6). While the presence of this local long range ordering mode might suggest
the presence of a previously undetected metastable line compound, it is our view based upon
Pearson’s Ni3X survey [11] within the Hume-Rothery atom size paradigm, that the ordering is
probably a purely dynamical effect of the class described by Krznowski and Allen [20], Chen
and Khachaturyan [21] and by Maugis [22]. This can also be rationalized more generally in
terms of Ostwald’s step rule requiring reactive path selection through the highest possible free
energy states.

The typical sequence of figures 2–4 and 6 represents the precursors of the colonies seen in
figure 8. Careful examination of the contrast in a 100 nm thick sample implies that the spinodal
structure consists of an interleaved pair of imperfect three-dimensional dendrites, one solute
rich and the other solute poor and separated by an array of connected incipient saddle surfaces.
Within this representation the internal stresses and associated strains of whatever origin are of a
capillary or gradient energy disposition. Already in figure 3 the intragranular pattern amplitude
with its cumulative strain energy has begun to decohere as evidenced by the Moiré fringes. This
instability could have been catalysed by the free surface, but this is not essential since with linear
amplitude increase, excess free volume has been quadratically produced (figure 5), contributing
in bulk to a threshold for activation and folding of the threading dislocations present. While
we have not directly observed the full role played by dislocations in the subsequent coarsening
reaction, circumstantially they must be created by dissipative combination of free volume
and excess strain energy and coherently rearranged to accommodate composition reversion
and provide a frontal conducting surface for the intragranular lamellar products of figure 8.
We have, however, observed the intermediate change in microstructure as recorded in situ in
figure 10. The emerging coarse dendritic form (figure 11) is in very good {100} correspondence
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Figure 10. Successor to figure 3 indicating local pre-coarsening instability, which acts as the
template nucleus for the dendrite cores of figures 11 and 12. See figure 2 for scale.

Figure 11. Directional [100] dendrite with bainite-like two-phase lamellar side-branches coarsened
from the modulation instabilities of figure 10 evolving into the nodules of figures 12 and 8. See
figure 2 for scale of modulations.

with the single crystal substrate and the initiating remnant of the coherent modulations as the
attached diffraction patterns prove. This manifestation may be designated as the ‘nucleus’
of the faceted near-spherical colonies (figures 8 and 12) which evolve from it. Despite the
lack of defined habit planes in the colonies the two product phases remain in a cube–cube
relationship together with a cube relationship of the dendritic cores to the mother structure
(figure 8). We are accordingly justified in designating the coarse lamellar product as a near
steady state spinodal decomposition.

This last thin film observation of figure 12 is extremely important in the validation of the
experimental interpretation including the uniqueness of a theoretical kinetic format. Firstly, it
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Figure 12. Near lamellar nodules exhibiting cube–cube branching with cube templating by the
initiating modulation. Note that the two main dendrite cores to the right and left are aligned with the
remnant modulations and their nucleate instabilities (figure 10). Lamellar spacing approximately
0.1 µm.

has reproduced in time-dependent detail the key results of figure 8, which had only previously
been observed in bulk material. Secondly, via the dense Moiré patterns evident at higher
magnification (e.g. figure 4) it has identified the source of intragranular dislocations which
must be made available for constructing a lamellar frontal conducting boundary. The dominant
source must be the combination of excess free volume and coherency strain energy since the
outcome is the same in bulk as deduced from thin film TEM. We note, however, that the
production of nodules in the bulk suffers less distortion than in thin films where surface
perturbations may be expected. Finally in identifying a near single crystal lamellar mode
it identifies the process with a steady state TDGL solution [18]. This necessarily brings our
explanations further into conflict with the long standing fourth order diffusion equation and
its coherency strain phenomenology, matters now to be discussed in greater detail. In this,
one can focus on Cahn’s 1961 statement that ‘nothing which could possibly be interpreted as
spinodal decomposition has been reported at high temperatures for Au–Ni’ and the 40 year
accumulation of data which has ultimately eliminated this gap in our knowledge.

3. Solute conservation in the mean field kinetic formulations of Cahn–Hilliard and
Ginzburg–Landau for a 50–50 alloy

Through a general misunderstanding of the intimate connection between the symmetries of
variational Lagrangians and conserving currents [23] Ginzburg–Landau kinetics has been
discounted for processes involving solute conservation. The following argument makes
the essential contrary point. Paraphrasing Cahn and Hilliard [10, 24], we are led to a one-
dimensional theory with Ginzburg–Landau mean field thermodynamics and constant Bragg–



Hume-Rothery size rule 8671

Williams coefficients. In this we incorporate nv atoms/unit volume, the lattice parameter a

and Cahn’s gradient energy coefficient κ estimated as 2nvkTca
2 for bcc with

d2f

dc2
= 4nvk(T − Tc). (1)

In the absence of coherency strain incorporating a binomial expansion of the ideal entropy
with c normalized for symmetry about 1/2 we obtain, following Cahn and Hilliard [10, 24]

∂c

∂t
= MCa

2∇2 δF

δc
= MCa

2

[
4nvk(T − Tc)

[
∂2c

∂x2

{
1 − 3

(
c

ceq

)2}

−6
c

c2
eq

(
∂c

∂x

)2]
− 2κ

∂4c

∂x4

]
MC > 0. (2)

The corresponding G–L reaction–diffusion formulation with Prigogine reaction kinetics [2],
from which (2) can be derived by double differentiation, is

∂c

∂t
= −MG

δF

δc
= MG

[
4nvk(Tc − T )c

{
1 −

(
c

ceq

)2}
+ 2κ

∂2c

∂x2

]
MG > 0. (3)

MC has been normalized such that both M have the units of frequency per unit energy. Solute
conservation has been imposed on equation (2) requiring all terms on the right to be products
of an even derivative and a constant or even function. From this requirement equation (3) is
also conservative, but requires inclusion of a Lagrange multiplier for off-symmetry cases [25].

Clearly, differentiating the RHS of (3) twice with a view to assuring conservation of
global c in equation (2) introduces a kind of circularity if not an overdetermination. Larché
and Cahn [26] in their discussion of the Ginzburg–Landau variational derivative containing a
coherency strain energy term actually included this solute-conserving multiplier, unaware that
it vanishes at alloy symmetry. They then explained how to evaluate it, but without actually
doing so, and proceeded to differentiate it away so as to reach their fourth order Fick-type
diffusion equation. A unique fastest growing wavelength and singular behaviour for amplitudes
exceeding the spinodes (equation (2)), neither of which are unequivocally observed, appear to
be a consequence.

Evidently equation (3) is smoothly integrable from a quench up to heterogeneous
equilibrium where c = ceq � √

1 − T/Tc/2 while equation (1) is restricted to < spinodal
amplitudes (c ∼ ceq/

√
3) unless a stochastic modification is incorporated [24]. This distinction

reserves steady state solutions to the TDGL (equation (3)), which pertains to the aforementioned
lamellar products at near equilibrium.

4. A semi-empirical treatment of coherency strain

The local dilatations which occur in equilibrium alloys evaluated using Vegard’s law act
to uniquely define the solution thermodynamics expressed through regular solution pairing
energies. With specific application to Au–Ni, Friedel [4] found that the Hume-Rothery size
rule can be quantified through evaluating the respective contributions to the homogeneous free
energy density and recognizing that the limiting extreme of solubility for a miscibility gap
will be expressed when Tc approaches the solidus temperature, Tm. In Friedel’s calculation of
the Vegard’s law effect upon clustering, where this is assumed to be the dominant source of
repulsion between large atoms and small ones, he found for Au–Ni with ξ = da/a0 dc that

4ξ 2µ � 2nvkTm (4)

whereµ is the shear modulus. The largest solid state ξ is given by the equality which implies, in
agreement with experiment, that ξ corresponds to rAu ∼ 1.15rNi . This is the Hume-Rothery
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maximum for predicting a full solubility range above Tc. But Tc is almost equal to Tm so
Au–Ni identifies a special marginal case of equation (3) upon substitution of the equality in
equation (4). One outcome is that 4ξ 2µ can be expressed as the equivalent of a directed pairing
energy ω (2kTc = Zω)

nvω � 4ξ 2µ/Z. (5)

Consequently, we can deduce from (3), (4) and (5) that in three dimensions the incipient diffuse
wall between the Au-rich and Ni-rich dendrites previously conceived in relation to figure 3 is
described by

1

MG

∂c

∂t
=

{
2Znvω(1 − T/Tc)

[
1 −

(
c

ceq

)2]
c + Znxωa2∇2c

}
(6)

where the strain effect appears consistently in a repulsive role as dominant in the uphill bulk
reaction and attractive in the downhill diffusion-like term. As noted before, the interesting
and highly consistent consequence of this approximate construction is that the stress field
associated with the emerging coherency strain must be deemed identical to that which would
be deduced from the incipient surface tension and the internal ‘surface’ saddle point array
defined by the interleaved dendrite walls, thus reemphasizing the chemical nature of Vegard’s
law strain.

At root this equivalence obtains for the irreversible thermodynamic reason that there exists
at least 3 kT of fluctuation free energy per atom in comparison with the total pairing energy
4kTc per atom so the quasi-static constraints in Cahn–Hilliard theory [10, 24, 26] are overridden
in such a way that the distinction between elastic and chemical energy emphasized by Cook
and de Fontaine [9] becomes untenable.

If we analyse the states of inequality in equation (4) and suppose that the total pairing
effect originally envisioned in equation (3) can be greater than the strain effect [1] we can
prorate the coefficient of the uphill and downhill terms on the right to accommodate a mixed
mechanism [4], viz., with the substitution of nvω in (6), we have the common coefficient[

8ξ 2µ + 4nvk

(
Tc − 2

ξ 2µ

nvk

)]
. (7)

Keep in mind that Tc is in all cases empirical so that the Hume-Rothery limit can be reached
by combination of pairing mechanisms, or if one or the other or both are weakened, Tc must
be decreased relative to Tm and the temperature range of full solubility increased. All of this
of course holds within the regular solution approximation.

Proceeding as usual via a sinusoidal solution of equation (3) at low amplitude and
generalizing from the foregoing bcc construction, we obtain the estimated critical wavelength
with z the areal coordination number,

λc = 2πa

√
z

Z

1

(1 − T/Tc)
(8)

independent of mechanism, which gives the right magnitude to accord with all of the
observations in Au–Ni since 1961. Missing from this analysis is nature’s rule for selecting the
most probable initial wavelength. Hillert gives a heuristic argument in favour of 3λc [31], which
is a plausible result for a process which transforms coherently to a lamellar ‘pearlite’ [15].

The most widely accepted treatment of coherency strain in stochastically reactive
crystalline solids was due to Cahn [10] and Hilliard [24] and later amplified by Larché and
Cahn [26]. It ignores the aforementioned pairing solution effects of strain while implying a
drastic lowering of Tc, both results which countermand the natural atom repulsion effect of
positive ξ in ω and which have never been unequivocally established experimentally [27].



Hume-Rothery size rule 8673

In Cahn–Hilliard theory for Au–Ni, the trailing downhill term of −δF/δc dominated by
Vegard’s law strain does not exist and is replaced on the RHS of equation (2) by −2ξ 2Y , where
the equilibrium state accessible (∂c/∂t = 0) implies the heterogeneous temperature relation

T = Tc(1 − ξ 2Y/4ξµ) (9)

which is a constant on the right and therefore physically meaningless. It appears that this
marginal anomaly is ultimately a consequence of improperly entering a heterogeneity effect
in the form of a wavelength-independent homogeneous one, which is to say, violating the
considerable currency in physics of Taylor–Landau analyticity.

A remark concerning loss of coherency as recorded in figures 3, 4 and 6 is in order. This
pertains to the creation of dislocation arrays, which is the precursor to lamellar decomposition
at a sharp (<10 nm thick) conducting front. As a matter of consistency and completeness the
latter process connects directly to the disposition of the initiating coherency strain because
lamellar decomposition requires more-or-less complete, near reversible prior reversion to a
locally strained uniform composition within a rich, highly conducting, high entropy plasma of
dislocations and vacancies. This reversion can only be effected through the downhill gradient
term as the unique source of stored free energy and the vehicle for substantial recovery of at
least part of the initial bulk supersaturation which is required to drive the lamellar successor.
Simultaneous formation of Cottrell atmospheres may also be involved.

5. Nucleation-free crystal boundaries

Underwood was prescient in naming the lamellar structure in Au–Ni ‘pearlite’ for it shares many
elements of the Fe–C eutectoid alloys within theory and observation. On the theoretical side,
the two-dimensional G–L equation possesses lamellar solutions incorporating diffuse triple
points and connecting near equilibrium boundaries [19]. Furthermore, conventional Fe–C–X
pearlites which form by phase boundary diffusion are commonly nodular with crystallographic
templating at austenite grain boundaries as well as intragranularly. Some boundaries including
twins are nucleation-free. There is a remarkably strong sense in which the TDGL equation
offers both a static and dynamical impact, the contributions to the kinetics being separately
applied in the eutectoid case.

The observations of nucleate-free or nucleation delayed boundaries in super-saturated
Au–Ni alloys by Underwood at 673 K, Cahn at 993 K and Fisher and Embury [28] at 573 K for
samples aged for lengthy times demand explanations. Although none of these examples are
direct evidence, substantial modulated decomposition contacting such boundaries must have
occurred in every case. Figure 13 is reproduced from Fisher and Embury. The upper boundary
is evidently part of a twin since Underwood and Cahn and Hegel observed that these are inactive
as nucleation sites. The lower one possesses curvature and is nucleation active on one side as
often observed by Cahn and Hegel in Fe–C–X and by Underwood in Au–Ni. Deducing from
the 〈100〉 dendrite in figure 11 that the elongated structure in figure 13 is equivalent we can
specify that the short lived lamellar structure emerging above the entire boundary length shares
this directionality and must have accordingly been templated by prior modulations, ignoring
any bias originating with boundary structure. We observed this phenomenon at 773 K but did
not succeed in capturing it on film. In this comparison with eutectoids, we find that it even has
relevance to bainites (figures 11 and 13) and to the form of the time–temperature-transformation
curve [15].
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Figure 13. Nucleation of Au–Ni lamellar structure at a grain boundary growing in the 〈100〉
direction thereby indicating nucleation templating on spinodal modulations (see explanation in
text). After Fisher and Embury [28].

6. Discussion

In 1971 Cook and de Fontaine [9] recognized the paradoxical relationship of Cahn and
Friedel–Eshelby treatments of coherency strain in spinodal decomposition and attempted a
partial resolution in terms of Khachaturyan’s static concentration wave or harmonic analysis
[3], even though it is unlikely that a theory requiring periodic boundary conditions has
relevance to an autonomous process [5]. Larché and Cahn make no reference to this important
contribution in their 1992 recapitulation of the standard strain-energy-dependent theory [15].
Very recently, Cahn reported a previously unpublished Au–Ni decomposition experiment at
993 K [29] exhibiting copious intragranular nodules, presumably of the faceted form observed
by Underwood up to 973 K. We have to interpret this as strongly favouring the strain-
inclusive solution theory of Friedel and Eshelby [4, 30]. Cahn has further emphasized that
within his Fick-type diffusion model the growth of fluctuations in a supersaturated solution is
excluded [10], so a solution must be framed in terms of a smooth or long wavelength initial
value perturbation, and by example this was demonstrated by Hillert in his original discrete
representation [31] of what became Cahn phenomenological theory. In contradiction, when
the ternary extension of Cahn theory is addressed it is easily shown that the required capability
of mounting an initial value problem is impossible to formulate because the non-commuting
coefficient matrices of the second and fourth derivatives cannot be simultaneously brought to
the diagonal [32]. Secondly, Larché and Cahn [26] adopt the fourth order equation with the
usual coherency strain correction yielding the following paradox: below Tc this is supposed to
have no effect on the downhill diffusion term, but instead acts to oppose and even to suppress
completely the so-called uphill diffusion process. On the other hand when applied above Tc,
as for example in [26] and in phase field applications, it acts to maximize the rate of downhill
diffusion. Free of such conflict, Ginzburg–Landau theory generates clustering and reversion for



Hume-Rothery size rule 8675

T < Tc, by definition discarding the reaction term at local equilibrium outside the miscibility
gap, the gradient term now being discontinuously modified for gradient free energy so as to
accommodate ordinary diffusion.

In seeking a deeper phenomenological understanding, we have been led to reexamine the
seminal Ginzburg–Landau treatment of superconductivity [6], where the absolute value of the
scalar ψ function can be taken to map to the scalar concentration c and the vector potential
to a vector component of the displacement tensor u (or magnetic self-field to self-strain [24]).
Besides the two gradient squared terms in the energy density there appears a positive cross-term
predicated upon field theory gauge invariance which by mapping includes a term ∼(uc)

2, and
since u ∼ ξc this ends up as a quartic in c. This increases the magnitude of the quartic term
in the Taylor expansion of the thermodynamics involved in equations (3) and (6) which would
normally terminate the modulation amplitudes at equilibrium values. The new term would
accordingly act to reduce the attainable amplitudes of the modulations in proportion to ξ 2 but
would have no effect upon the early stage of the reaction. Such behaviour might be regarded
as a reasonable compromise between the Cahn–Hilliard and Ginzburg–Landau formulations.

In 1994 Goryachev [25] challenged the validity of the Cahn–Hilliard equation on
the grounds that a Fickian conservative diffusion flux formulation from linear irreversible
thermodynamics cannot rationally be applied to a chemical potential form like δF/δc which
contains gradient forms. He also cited certain anomalies in the reciprocal space solutions which
are removed using a G–L formulation provided a Lagrange multiplier for solute conservation is
appropriately entered. We have recognized that in real space these irrationalities are represented
by the absence of a universally defined cut-off wavelength at the Hume-Rothery margin (cf
equation (10)), global sample boundary conditions which are inappropriate to a completely
autonomous system [5], the impossibility of framing an initial value problem within the ternary
generalization [32] and an untenable analytic continuation to T > Tc which violates the second
law in the ideal solution limit (equation (2)). In tandem with these theoretical anomalies a
wide range of experiments and discrete computational models have failed to find or predict
unequivocally the unique fastest growing wavelength at early times implied by equation (2)
[27] or the barrier to continuous growth of amplitudes beyond the spinodes. The present
contribution adds to this the failure of Cahn–Hilliard theory to correctly generate the effects of
coherency strain in the conventional down-quench autonomous experiment in Au–Ni. This is in
contrast to the semi-quantitative success of presently modified TDGL theory in encompassing
the dominant observations.

It is worth noting that Cahn–Hilliard theory as modified by Cook and de Fontaine [9] could
have application to reversion experiments [24]. Yang [33] has illustrated such an application
by reversion of epitaxial [111] Au–Ni films of short wavelengths where the boundary and
initial conditions are appropriate to a diffusion model with an externally imposed strain field.
Furthermore, in the more usual down-quench, the Hillert-Cahn–Hilliard qualitative conclusion
as to the existence of diffuse phase boundaries in the double-well context stands as a singular
achievement of 20th century chemical physics [29].

The simplest summary of our theoretical viewpoint is to recognize that a miscibility gap
implies repulsion between unlike atoms in which the Hume-Rothery size effect due to the Pauli
principle can represent the dominant chemical solution effect. The ensuing clustering reaction
after a quench consists of a near homogeneous fluctuation-induced local repulsive separation,
creating incipient surface in which the responsive gradient energy acts diffusively to flatten the
profiles, and these profiles are subject in turn to further fluctuation amplitude accumulation.
Positive free energy fluctuations of order kT per atom per degree of freedom encompassing
the free-energy density function automatically surmount any implied barrier due to curvature
or relaxed atom misfit thereby favouring the TDGL over any form of the C–H equation.
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For historical reasons, we have continued to employ the term ‘spinodal decomposition’.
However, for scientific precision it must be emphasized that the spinodes do not enter the
Ginzburg–Landau formulation in any empirically significant way.

These experiments in Au–Ni and fair closure with theories originating with Hume-
Rothery’s discoveries should serve as the basis for planning more realistic discrete
models and continuous phenomenological formulations which are capable of incorporating
explicit concentration dependences and the complicating presence of interactions between
decomposition and local long range order.
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